JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 6, June 1993

A Parallel Algorithm for Large-Scale

Linear Programs with a Special Structure

SEYOUNG OH

ABSTRACT. A new sequential algorithm and computational results
for large-scale linear programs with a special structure were presented
in the previous paper [9]. In this paper, a parallel version of the
algorithm was developed for a hypercube multiprocessor architecture
NCUBE2. Computational results using 128 processors are presented
for a randomly generated large-scale sparse or dense problems with

the number of variables up to 256 and constraints up to 5 million.

1. Introduction.

A problem considered here is an important type of large-scale linear
program with a special structure is that with relatively few variables
but many inequality constraints. A structure of particular interest
occurs when the constraint matrix consists of K block matrices,
each m x m , where K may be 1000, or larger. Furthermore, each

m X m block is diagonally dominant with positive entries on the

diagonal.
The problem can be stated as follows:
(1) max bT
subject to (CHTz< &7, ; = 1,.., K,

where 5> 0, z and the d’ are vectorsin R™ , and each (C?)7T is
an m Xm matrix which is strictly diagonally dominant, with positive

diagonal elements and nonpositive off-diagonal elements.

Received by the editors on June 30, 1993.
1980 Mathematics subject classifications: Primary 49M35.

139

140 SEYOUNG OH

A linear program with this structure represents production prob-
lems or the infinite horizon, discounted Markov decision problem, as
described in [1], [3] and [10]. For these problems, the number of con-
straints grows as the product of the state space size and the control
space size, and therefore may become very large.

An efficient sequential algorithm and computational results on
CRAY-2 were shown in the previous paper [9]. In the paper, the
problem (1) was considered as the dual problem and the equivalent
primal with only m rows should be solved. The new method pre-
sented in the paper can also be thought of as a simplex type algorithm
applied to the equivalent primal. The primary difference is that in-
stead of only one pivot, multiple pivots may be carried out at each
iteration. This caused typically a dramatic reduction in the total

number of iterations required, as compared to the Simplex Method.

In this paper, a parallel version of the new algorithm was devel-
oped for a hypercube multiprocessor architecture NCUBE2. Com-
putational results using 128 processors are presented for randomly
generated large-scale sparse or dense problems.

In Section 2, the necessary notation is introduced and the parallel
algorithm described.

In Section 3, an efficient way to solve linear systems on hypercube
architectures. A number of large-scale sparse or dense problems gen-
erated for the test of the efficiency of the algorithm are described in
Section 4.

In Section 5, computatinal results using 128 processors of NCUBE2
are presented for a number of randomly generated large-scale sparse
or dense problems with number of variables up to 256 and constraints
up to 5 million. The time to solve the largest problem (m = 128, K =
19200) with 128 processors was 2.86 seconds and the scaled speedup
achieved was 107 whose efficiency is 84%.

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 141

2. Reformulation and Parallel Algorithm Description.

2.1 Reformulation.

To simplify the presentation, each row of the system of inequalities
(1) is rescaled so that the diagonal elements of (C?)T are all equal
to unity. The rescaled system (1) becomes

(2) e <&, j=1,., K,

where each row has been divided by the original diagonal element. As
a result, each column of C’ has a maximum element equal to unity,
with the sum of the absolute values of all other elements less than
unity.

The mK columns of the matrices C7, j = 1,.., K, are now
regrouped into m matrices with K columns each. Specifically, let
A' € R™*K | denote the matrix with the i** column from each of
the matrices C! , C? y ee Q_K . The elements of d’ are regrouped
in a compatible way to give vectors ¢! € RK |, i=1,.., m . The

system (1) or (2) can now be written as :
(3) ATz <, i=1,.,m.

The columns of A* will be represented by aj. , J =1,., K,with

the i** element of each vector aj- equal to unity. Now let

A= [A' A .. A™] € R™*mK
F = [(H)T (AT ... (c™T] € R™K .
Then the original problem (1) can be written as

4 max { b7z | ATz < ¢ .
@ ax { 87z |

142 SEYOUNG OH

This original problem will be considered as a dual problem with m
variables and mK linear inequality constraints. The equivalent pri-

mal is :
(5) min{cTyIAy=b,y20},y€RmK.
y

Let B € R™*™ denote a feasible basis for (5).

2.2 Parallel Algorithm Description.

Since the algorithm allows multiple pivots at each iteration and
each pivot occurs in each of the m blocks of the problem (4) or
(5), a parallel implementation can be done efficiently on a hypercube
MIMD computer. Distributed-memory multiprocessor and multicom-
puter architectures like NCUBE2 with 1024 processors, are an intu-
itive choice for the new algorithm for the large-scale LP problems (1).
Because the processors are consistent with the blocks in the reformu-
lated problem (4), whose constraint matrix is not necessarily sparse
in structure, and the problem size grows as the product of m and K,
it requires a big memory size for one processor. A parallel version of
the new sequential algorithm in the previous paper [9] was developed
for a hypercube multiprocessor architecture NCUBE2 in the Sandia
National Laboratory.

NCUBE2 is one of MIMD high performance parallel computers
with a hypercube architecture which has highly concurrent multipro-
cessors based on the binary n-cube topology which is well known for
its powerful interconnection features and suitable for parallel speedup
research. Every 1024 processor has a fast 32-bit and 64-bit floating
point arithmetic to be competitive with conventional supercomputers
on an absolute performance basis. The processors share information
through the communication I/O channels. The cost parameters for

running a program on NCUBE2 are mainly floating-point operations,

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 143

message transfers for interprocessor communication, load imbalance
and synchronization. The effects of these parameters can be reduced
by users according to their computing environment. Efficient broad-
cast algorithm, message organization and careful ordering of reads
and writes can yield considerable communication overlap and idle of
processors, which reduces the time spent on interprocessor communi-
cation, see [6].

Assigning each node into one or more blocks of the problem (5),

we compute 6; using
©) b = min ¢} (2) = 64, (@) -

and check the dual feasibility with the current dual solution z which
broadcasts to all nodes. If the dual feasibility is not satisfied, then
pick the most violated constraints from each block which was assigned
into a node. At step 3, by sending a pivot column from the root node
to all of the other nodes, we update the basis B locally in all nodes.
As in practical problems, when the number of blocks K is relatively
larger than the number of variables m, the cost of communication
is acceptable for the parallel algorithm because the amount of work
done between synchronizations is relatively large. For the Markov de-
cision problem which is a special case of the LP model (1), where all
entries of constraint matrix C in the problem (1) are less than one,
the amount of time for checking the dual feasibility at each node and
the stored data in all of the nodes are well balanced. For the general
practical problems, the main difficulty of the parallel implementation
is a load imbalance in the case that m is not a multiple of the num-
ber of processors. By choosing the number of processors p so that a
residual of the division m by p is close to m , the load imbalance can

be resolved and the idle time of processors is reduced.

144

SEYOUNG OH

ALGORITHM 2.1. Host program

Hstep 1.

step 2.
Hstep 3.
Hstep 4.

Hstep 5.

Read the dimension of cube, the number of processors , the
number of blocks K and the number of variables m and the
density p of constraint matrix, and parameters for generating
problems.

Open a hypercube and load the program to all nodes.

Send the input values in Hstep 1 to node 0.

Receive a message indicating a termination of iterations from
node 0. |

Close the hypercube. 0O

ALGORITHM 2.2. Node program

Nstep 1.
Nstep 2.
Nstep 3.

Nstep 4.

Nstep 5.

Nstep 6.

Nstep 7.

Start the timer.

Get my node number (gray code) and the dimension of cube.
At node 0, receive the input values (Hstep 1.) from the host.
If my node is not 0, then receive the input values from node
0 by fan-out broadcast.

Create the block number(s) between 0 and m which is(are)
allocated by the order of gray code and block interleaved
storage scheme. Generate the constraints of corresponding
block(s) with the parameter and the density of constraint
matrix.

Record the time. Choose any column vector(s) from the as-
signed constraint block(s) for the first feasible basis B .
Fori=m,..., 2, if my node has column : , broadcast the
pivot row to all nodes using logarithmic fan-out algorithm.
Update the column(s) from Nstep 5 by Gaussian elimination.
For:i=1,..., m, if my node has the column ¢ , compute z;
and send z; to all nodes using logarithmic fan-out broadcast

to backsolve for z .

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 145

Nstep 8.

Nstep 9.

Nstep 10.

Nstep 11.

Test for dual feasibility. If not satisfied with the dual feasi-

bility choose that column from A‘ corresponding to the most
: q
a; in B at my node. If satisfied for all constraints at my node,

violated constraint, that is a}, and exchange it with column
then my node is complete.

Send a message indicating my node complete (or not) to node
0 using fan-in broadcast. At node 0 collect the messages,
check if all nodes are done or not, and send a message of
continuation or termination to all nodes. If all of the nodes
are not done, then go to Nstep 6.

Stop the node timer. Send a message of termination from
node 0 to the host. Gather all of the timing statistics at node
0 by logarithmic fan-in algorithm.

Print out the output data at node 0. (this data includes solu-
tion of the problem, error of feasibility, number of iterations

and execution time) 0O

To handle all synchronizations, fan-in and fan-out algorithms were

implemented by using spanning tree of the hypercube. The algorithm

broadcasts information from any single node to all of the other nodes

in a given n-cube in log, (p) steps, where p is the number of processors.

At each iteration of Gaussian elimination, the node, which has to send

its pivot row to all of the other nodes, must first send it to a neighbor

which will have to send the pivot row for the next update. This can

be obtained by rotating the order in the hypercube dimensions of the

data paths taken at each of the log,p steps. This also ensures that

the messages have arrived by the time the corresponding reads are
executed at almost of all nodes, see Algorithm 2.3. To obtain the

message of completion or continuation of iterations from all nodes, a

fan-in algorithm was used in reverse of the fan-out algorithm.

146 SEYOUNG OH

If the number of the dual variables m is a multiple of the number
of processors p, then the blocks will be assigned to the processors
evenly and the load is balanced except for the load imbalance which
is caused by data-dependent difference in arithmetic times. Since the
constraints were stored by a block interleaved scheme (each block has

K x m matrix), the performance will be reduced when the remainder

of m divided by p is small.

ALGORITHM 2.3. For a given d-dimensional hypercube, a message
is broadcasted from a source processor to all of the other processors
by rotating the dimension (0,... ,d — 1) according to gray code. The
teor function is exclusive OR. The igc function is the inverse of a

gray code mapping gc .

next.gray = tgc(source) + 1
k = log,(|gc(next.gray) — source|)
mynode.new = ieor(mynode, source)

For :=0,d-1
Jj=k+imodd
if 2/ < mynode.new < 20+1)

- nbr = mynode.new — 27
send.node = ieor(nbr, source)
receive a message from send.node

elseif mynode.new < 2/
nbr = mynode.new + 27
get.node = ieor(nbr, source)
send a message to get.node
endif
Endfor

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 147

3. Solving linear systems.

We next consider an implementation of an algorithm for linear
systems on the parallel computer NCUBE2. A number of papers have
appeared in recent years describing various parallel LU factorization
schemes on distributed memory architectures, for example see [2], [4],
[5], and [7]. Assuming that [= |T] , in the previous section the
it block of constraint matrix was assigned to the processor of j th
order of gray code, where j = mod(i,p) +1and 1 <i < K . When
the most violated constraint is picked from each block at each node
(total m constraints are picked globally), columns 1,p + 1,2p +
1,...,Ilp+ 1 are already in the first processor of gray code, columns
2.p+2,2p+2,...,lp+2 are in the second processor, and so on. It
is not necessary to move any columns to another processor to solve
the linear system of the current step. Omne can take advantage of
this storage scheme to solve a linear system itself in parallel which
is explained at the end of this section. The algorithm adopted Row
Storage with Row or Column Pivoting, but when the problem (1)
is regrouped into the problem (2) in Section 2.1, all basis matrices
become well pivoted with unity diagonal elements and the absolute
values of the off-diagonal elements less than 1. Therefore, no pivot
is required. Let Bz = cp be the linear system to solve, B = (8;;) a
feasible basis, and cp = (c;) the corresponding primal cost coefficient
vector. Each processor executes Algorithm 3.1 and Algorithm 3.2.

ALGORITHM 3.1. LU factorization with interleaved row storage

scheme

dok=0,m-1
if processor owns row k
fan-out broadcast row k to all processors

else

148 SEYOUNG OH

receive row k
endif
for all rows 1 > K that processor owns
ik = Bir/Br
doj=k+1,m-1
Bij = Bij — AixBr;
end

end

| These schemes for solving a linear system in parallel have a draw-
back which decreases the number of active processors by one at each
step. However, our storage scheme which is called Pattern Wrapped
Interleaved Storage alleviates the problem of processors becoming idle
and keeps all processors working almost until the end of the reduc-
tion. However, there still exists some imbalances in the workloads of
processors. For example, at each step one row is no longer needed.
These imbalances affect a different speed-up when we choose a differ-
ent number of processors p for the same problem, which are shown in
Table 2 - 4 later in this section.

ALGORITHM 3.2. Back substitution with a interleaved row storage
scheme
do k=m,1
"~ if processor owns row k
Tk = ck/Brk
fan-out broadcast z to all processors
else
receive Ty
endif
for all rows 1 < k that processor owns

ci = ¢ — PirTk

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 149

end

4. Test Problems.
In real life problems, both the number of blocks K and the number

of variables m may be very large. In addition, the problems have
usually full dense constraint matrices. For the purpose of comparison
with the computational results on several nodes and one node, the
entire constraint matrix is stored in one processor when the algorithm
uses only one node. However, due to the restricted local storage of
nodes for solving a big problem on one node, if K and m are getting
larger, the density of the problem should be getting smaller. This
will occur even if we use a sparse structure storage scheme of data
for a large-scale sparse problem. The test problems. were generated
randomly in a given hypercube with K ranging from 150 to 19200,
m ranging from 20 to 256, and density ranging from 1 to 100 %
which is as big as the memory allows. The constraints in the problem
(4) are stored in the local memory of node(s) of NCUBE2 using a
sparse row oriented scheme. Nonzero elements of constraint matrix
A and the right hand side c are stored in a real array. These nonzero
elements were randomly generated in each of the processors assigned
by the host program with all of the blocks of matrix A using the block
interleaved storage scheme as explained in the previous section. For
each size, 15 problems are generated so that they are satisfied with the
diagonal dominance and the other properties of the problem (1). In
order to check the performance of the algorithm when the constraints
have sharp corners, the difference between the diagonal element and
the absolute sum of off-diagonal elements was randomly chosen from
the interval (0,1). The constraints which have a sharp corner are
illustrated by less diagonal dominance property which causes to one

drawback of the successive approximation methods, see [10].

150 SEYOUNG OH

5. Computational Results and Analysis.

The parallel algorithm in Section 2.2 was designed to solve a class
of randomly generated problems described in Section 1 and to be
implemented on a hypercube multiprocessor. It was implemented
for a second generation hypercube NCUBE2 with 1024 processors
maintained by the Sandia National Laboratory using the NCUBE

F77 Fortran compiler.

15 problems for each size with K ranging from 150 to 19200, m
ranging from 20 to 256, and density ranging from 1 to 100 % were
tested on the number of nodes ranging from one to 128 processors of

NCUBE2.

The more theoretical measure of speed-up is a comparison of the
best possible algorithm on the fastest sequential machine versus the
best possible parallel algorithm on a p-processor machine. For the
class of LP problems like (1), the sequential code running on CRAY-2
is the fastest code. Table 1-4 shows the time to execute the sequential
algorithm in the previous paper [9] on CRAY-2 and the time to exe-
cute the parallel algorithm on NCUBE2 with 64 nodes. The large and
dense problem which can be run on a large number of processors does
not fit into the memory of a single processor. Therefore, the larger
the problem that can be run, the smaller the density that was used.
This is shown in Table 1-4. This small density for the large problem
degraded speedup much more than in the case of full density for the
same size of problem. The reason is that a sparse row oriented storage
scheme for the constraint matrix was used. If the density decreases
as the size of problem increases, then the number of nonzero elements
in the constraints will not be changed much. From the point of view
of a number of operations, each iteration for the sequential algorithm
requires 2—';‘: +2pm(m — 1)K , where p is a density of the constraint
matrix. If values of pm(m — 1)K for two different size of problems

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 151

are almost the same, then the degree of parallelism will depend on
the solver of linear systems. This does not take advantage of a major
part of the parallel implementation for the class of the problem (1).
So it is not reasonable to keep the number of sequential operations
fixed to analyze performance, because the usual parallel overhead is
known to have more effect on smaller problems than on larger prob-
lems. To handle this kind of problem, we compute a scaled speed-up
by allowing the problem to be as large as the memory of the nodes
we used. So we can define a scaled speed-up by comparing time to
execute a problem of maximum size that can be solved on p-processor
versus time to execute a problem of maximum size for 1-processor.
Also we need an adjustment factor which is the ratio of the number
of operations required to solve those problems. In other words, we
can define the speed-up by measuring a computation rate as the size
of problem and the number of processors increase, see [8]. The num-
ber of operations required by the algorithm at each iteration can be
defined as a function of m and K,
f(m,K) =~ 2—7;1:—;- +2pm(m — 1)K.
If we choose a maximum problem size (m;,K;) , suitable for a

single processor, then the appropriate problem size for p processors
(my, K,) would satisfy f(m,, K,) = ypf(m1, K1) , that is,

2m,,° 2m,®

(7) + 2pmp(mp - l)I{p ~ vp (+ 2pm1(m1 - l)I{1> ’

where v is a ratio of the number of iterations for the problem of
size (mi,K1) to that for the problem of size (m,,K,) . From the
computational results for many test problems in Section 4, we notice

that « is very close to 1. For an example, assuming we have a dense

152 SEYOUNG OH

problem with a maximum size (20, 100) for one processor, we try to
find a problem size that can be solved using 8 processors. In order to
achieve a perfect speed-up, the problem size increases so that 8 times
of the number of operations can be done in the same amount of time
that is taken to solve a problem of size (20, 100). From the equation
(7), when m; = mg =20, K; = 100 and 7 = % from Table 0, K3
will be 728. Thus from the execution time for both problems in Table
0 the scaled speedup will be

T1(20,100) x 8 1.363 x 8
T(20,728) ~ 1.783

= 6.12,

where T,(m,, K,) is the execution time for the problem size (m,, Kp)

using p processors.

Table 0: Execution time (sec) on NCUBE2 for simple example

problems

K Blocks m Variables | Iterations | 1 node | 8 nodes
100 20 5 1.363 -
728 20 6 11.090 1.783

Table 2 shows the effects of number of blocks while number of
variables is fixed. In Table 3, the effects of number of dual variables m
while number of blocks K is fixed are given. In Table 4, test problems
were developed to experimentally characterize the effects of densities
of the constraint matrices when the problem size was fixed. We notice
in this table that if the constraint matrix is fully dense, then efficiency
increases up to 99% by using an appropriate number of processors.
Table 4 shows that we can obtain a high degree of parallelism for this
algorithm when most of the practical problems are fully dense.

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 153

Table 1: Comparison of new parallel algorithm on NCUBE2 and
CRAY-2.

Problem Size Time (sec)

No. of Dual K/m | Density | Iter- | NCUBE2 | CRAY-2
Blocks (K)Var.s (m) ations | 64 nodes
412 252 1.6 0.4 7 20.74 8.27
443 76 5.8 1.0 7 4.35 2.28
1703 124 13.7 0.5 10 17.40 18.54
3409 124 27.5 0.2 8 12.36 23.38
4035 68 59.3 0.3 8 9.88 14.60

Table 2: Dependence of time and scaled speed-up on number of
variables for fixed number of blocks on NCUBE2.

Problem Size
No. of Dual Processors Time(sec) Scaled

Blocks (K) Var.s (m) per iteration | Speed-up
150 128 1 4.958 1
300 - 128 2 5.052 1.45
600 128 4 3.938 3.07
1200 128 8 3.351 4.96
2400 128 16 3.073 13.20
4800 128 32 2.938 26.71
9600 128 64 2.881 53.61
19200 128 128 2.862 107.07

154 SEYOUNG OH

Table 3: Dependence of time and scaled speed-up on number of
blocks for fixed number of variables on NCUBE2.

Problem Size
No. of Dual Processors Time(sec) Scaled
Blocks (m) Var.s (m) per iteration | Speed-up

1500 20 1 2.769 1
1500 28 2 2.617 2.11
1500 40 4 2.592 4.30
1500 56 8 2.594 8.61
1500 80 16 2.677 16.82
1500 128 32 2.942 30.56
1500 192 64 3.496 53.53
1500 256 128 4.082 92.86

Table 4: Dependence of time and scaled speed-up on density for
fixed size of problem on NCUBE2.
Problems are of K = 1500 , m = 128.

Density | Processors Time(sec) Scaled
per iteration | Speed-up
0.01 1 4.106 1.0
0.03 2 3.385 1.72
0.05 4 3.417 3.31
0.12 8 3.378 6.88
0.27 16 3.207 14.77
0.55 32 3.063 31.51
1.00 64 2.725 63.61
1.00 128 1.589 109.11
REFERENCES

1. Bertsekas, D.P., Dynamic Programming : Deterministic and Stochastic
Models, Prentice-Hall, Englewood Cliffs, NJ., 1987.
2. Chu, E. and George, A., Gaussian elimination with partial pivoting and

load balancing on a multiprocessor, Parallel Comput. 5 (1987), 65-74.

A PARALLEL ALGORITHM FOR LAGRE-SCALE LINEAR PROGRAMS 155

3. Deonardo, E.V., Dynamic Programming, Models and Applications., Pren-
tice-Hall, Englewood Cliffs, NJ., 1982.

4. Geist, A. and Heath, M., Matriz factorization on a hypercube, Hypercube
Multiprocessors 1986, M.T. Heath, ed., Society for Industrial and Applied
Mathematics, Philadelphia, 1986, pp. 161-180.

5. Geist, A. and Romine, C., LU factorization algorithms on distributed mem-
ory multiprocessor architectures., SIAM J. Sci. Statist. Comput. 9 (1989),
639-649.

6. Gustafson, John L., et al, Development of parallel methods for a 1024-pro-
cessor hypercube, SIAM J. Sci. Stat. Comput. 9 (1988), 609-638.

7. Ispen, 1., Saad, Y., and Schultz, M., Complezity of dense linear system
solution on a multiprocessor ring, Linear Algebra Appl. 77 (1986), 205-239.

8. Ortega, J., Introduction to Parallel and Vector Solution of Linear Systems,
Plenum Press, New York and London, 1988.

9. Rosen, J.B. and S. Oh, An efficient algorithm for large-scale linear pro-
grams with a special structure, Advances In Optimization And Parallel
Computing 1992, P.M. Pardalos, ed.,, NORTH-HOLAND, The Netherlands,
1992, pp. 247-266.

10. Tseng, P., Distributed computation for linear programming problems satis-
fying a certain diagonal dominance condition, Mathematics of Operation
Research 15 (1990), 33—48.

DEPARTMENT OF MATHEMATICS
CHUNGNAM NATIONAL UNIVERSITY
TAEJON, KOREA

