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ON THE STABILITY OF THE FUNCTIONAL
EQUATION DERIVING FROM QUADRATIC AND
ADDITIVE FUNCTION IN RANDOM NORMED

SPACES VIA FIXED POINT METHOD

Sun Sook Jin* and Yang-Hi Lee**

Abstract. In this paper, we prove the stability in random normed
spaces via fixed point method for the functional equation

f(2x + y) + f(2x− y) + 2f(x)− f(x + y)− f(x− y)− 2f(2x) = 0.

1. Introduction

In 1940, S. M. Ulam [27] raised a question concerning the stability of
homomorphisms: Given a group G1, a metric group G2 with the metric
d(·, ·), and a positive number ε, does there exist a δ > 0 such that if a
mapping f : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1 then there exists a homomorphism F : G1 → G2 with

d(f(x), F (x)) < ε

for all x ∈ G1? As mentioned above, when this problem has a solution,
we say that the homomorphisms from G1 to G2 are stable. In 1941, D.
H. Hyers [5] gave a partial solution of Ulam’s problem for the case of ap-
proximate additive mappings under the assumption that G1 and G2 are
Banach spaces. Hyers’ result was generalized by T. Aoki [1] for additive
mappings and Th. M. Rassias [23] for linear mappings by considering
the stability problem with unbounded Cauchy differences. The paper of
Th. M. Rassias has provided a lot of influence in the development of
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stability problems. The terminology Hyers-Ulam-Rassias stability orig-
inated from these historical background. During the last decades, the
stability problems of functional equations have been extensively investi-
gated by a number of mathematicians, see [2]-[4], [6]-[18].

Recall, almost all subsequent proofs in this very active area have used
Hyers’ method, called a direct method. Namely, the function F , which is
the solution of a functional equation, is explicitly constructed, starting
from the given function f , by the formulae F (x) = limn→∞ 1

2n f(2nx)
or F (x) = limn→∞ 2nf( x

2n ). In 2003, V. Radu [22] observed that the
existence of the solution F of a functional equation and the estimation
of the difference with the given function f can be obtained from the
fixed point alternative. In 2008, D. Mihet and V. Radu [20] applied
this method to prove the stability theorems of the Cauchy functional
equation:

(1.1) f(x + y)− f(x)− f(y) = 0

in random normed spaces. We call solutions of (1.1) additive mappings.
In 2008, A. Najati and M. Moghimi [21] obtained a stability of the
functional equation deriving from quadratic and additive function:

(1.2) f(2x + y) + f(2x− y)+ 2f(x)− f(x + y)− f(x− y)− 2f(2x) = 0

by using the direct method.
In this paper, using the fixed point method, we prove the stability

for the functional equation (1.2) in random normed spaces. It is easy to
see that the mappings f(x) = ax2 + bx + c is a solution of (1.2). Every
solution of the functional equation deriving from quadratic and additive
function (1.2) is said to be a general quadratic mapping.

2. Preliminaries

In this section, we state the usual terminology, notations and conven-
tions of the theory of random normed spaces, as in [25, 26]. Firstly, the
space of all probability distribution functions is denoted by

∆+ := {F : R ∪ {−∞,∞} → [0, 1]
∣∣F is left-continuous

and nondecreasing on R, where F (0) = 0 and F (+∞) = 1}.
And let the subset D+ ⊆ ∆+ be the set D+ := {F ∈ ∆+|l−F (+∞) = 1},
where l−f(x) denotes the left limit of the function f at the point x.
The space ∆+ is partially ordered by the usual pointwise ordering of
functions, that is, F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R.
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The maximal element for ∆+ in this order is the distribution function
ε0 : R ∪ {0} → [0,∞) given by

ε0(t) =
{

0 if t ≤ 0,
1 if t > 0.

Definition 2.1. ([25]) A mapping τ : [0, 1]× [0, 1] → [0, 1] is called a
continuous triangular norm (briefly, a continuous t-norm) if τ satisfies
the following conditions:
(a) τ is commutative and associative;
(b) τ is continuous;
(c) τ(a, 1) = a for all a ∈ [0, 1];
(d) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b) =
min(a, b) and τL(a, b) = max(a + b− 1, 0).

Definition 2.2. ([26]) A random normed space (briefly, RN-space)
is a triple (X, Λ, τ), where X is a vector space, τ is a continuous t-norm,
and Λ is a mapping from X into D+ such that the following conditions
hold:
(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0,
(RN2) Λαx(t) = Λx(t/|α|) for all x in X, α 6= 0 and all t ≥ 0,
(RN3) Λx+y(t + s) ≥ τ(Λx(t), Λy(s)) for all x, y ∈ X and all t, s ≥ 0.

If (X, ‖ · ‖) is a normed space, we can define a mapping Λ : X → D+

by

Λx(t) =
t

t + ‖x‖
for all x ∈ X and t > 0. Then (X, Λ, τM ) is a random normed space,
which is called the induced random normed space.

Definition 2.3. Let (X, Λ, τ) be an RN -space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if,
for every t > 0 and ε > 0, there exists a positive integer N such that
Λxn−x(t) > 1− ε whenever n ≥ N .
(ii) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0
and ε > 0, there exists a positive integer N such that Λxn−xm(t) > 1− ε
whenever n ≥ m ≥ N .
(iii) An RN-space (X, Λ, τ) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.

Theorem 2.4. ([25]) If (X, Λ, τ) is an RN-space and {xn} is a se-
quence such that xn → x, then limn→∞ Λxn(t) = Λx(t).
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3. On the stability of the functional equation deriving from
quadratic and additive functions in RN-spaces

We recall the fundamental result in the fixed point theory.

Theorem 3.1. ([19] or [24]) Suppose that a complete generalized
metric space (X, d), which means that the metric d may assume infinite
values, and a strictly contractive mapping J : X → X with the Lips-
chitz constant 0 < L < 1 are given. Then, for each given element x ∈ X,
either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},
or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;

(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Let X and Y be vector spaces. We use the following abbreviation for
a given mapping f : X → Y by

Df(x, y) := f(2x+y)+f(2x−y)+2f(x)−f(x+y)−f(x−y)−2f(2x)

for all x, y ∈ X.
Now we will establish the stability for the functional equation (1.2)

in random normed spaces via fixed point method.

Theorem 3.2. Let X be a linear space, (Z, Λ′, τM ) be an RN-space,
(Y, Λ, τM ) be a complete RN-space and ϕ : (X \ {0})2 → Z. Suppose
that ϕ satisfies one of the following conditions:
(i) Λ′αϕ(x,y)(t) ≤ Λ′ϕ(2x,2y)(t) for some 0 < α < 2,

(ii) Λ′ϕ(2x,2y)(t) ≤ Λ′αϕ(x,y)(t) for some 4 < α

for all x, y ∈ X and t > 0. If f : X → Y is a mapping such that

(3.1) ΛDf(x,y)(t) ≥ Λ′ϕ(x,y)(t)

for all x, y ∈ X \ {0} and t > 0, then there exists a unique general
quadratic mapping F : X → Y such that

(3.2) Λf(x)−F (x)(t) ≥
{

M(x, (2−α)t
5 ) if ϕ satisfies (i),

M(x, (α−4)t
5 ) if ϕ satisfies (ii)
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for all x ∈ X \ {0} and t > 0, where

M(x, t) := τM

{
Λ′ϕ(x

3
,−x

3
)(t), Λ

′
ϕ(x

3
,− 2x

3
)
(t), Λ′ϕ(x

3
,−x)(t), Λ

′
ϕ(x

3
,− 4x

3
)
(t),

Λ′
ϕ(−x

3
, x
3
)
(t),Λ′

ϕ(−x
3

, 2x
3

)
(t), Λ′

ϕ(−x
3

,x)
(t), Λ′

ϕ(−x
3

, 4x
3

)
(t)

}
.

Moreover if α < 1 and Λ′ϕ(x,y) is continuous in x, y ∈ X \ {0} under the

condition (i), then f is a general quadratic mapping.

Proof. Sine Df(0, 0) = 0, we can assume that f(0) = 0 without loss
of the generality. We will prove the theorem in two cases, ϕ satisfies the
condition (i) or (ii).
Case 1. Assume that ϕ satisfies the condition (i). Let S be the set
of all functions g : X → Y with g(0) = 0 and introduce a generalized
metric on S by

d(g, h) := inf
{
u ∈ R+

∣∣Λg(x)−h(x)(ut) ≥ M(x, t) for all x ∈ X \ {0}} .

Consider the mapping J : S → S defined by

Jf(x) :=
f(2x)− f(−2x)

4
+

f(2x) + f(−2x)
8

,

then we have

Jnf(x) =
1
2

(
4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))

)

for all x ∈ X and n ∈ N. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary
constant with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3),
for the given 0 < α < 2 we have

ΛJg(x)−Jf(x)

(αu

2
t
)

= Λ 3(g(2x)−f(2x))
8

− g(−2x)−f(−2x)
8

(αu

2
t
)

≥ τM

{
Λ 3(g(2x)−f(2x))

8

(
3αut

8

)
, Λ g(−2x)−f(−2x)

8

(
αut

8

)}

≥ τM

{
Λg(2x)−f(2x)(αut), Λg(−2x)−f(−2x) (αut)

}

≥ M(2x, αt)
≥ M(x, t)

for all x ∈ X \ {0}, which implies that

d(Jf, Jg) ≤ α

2
d(f, g).
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That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant α

2 . Since the equality

f(x)− Jf(x) =
1
8

(
6Df

(x

3
,−x

3

)
− 3Df

(x

3
,−2x

3

)
− 3Df

(x

3
,−x

)

−3Df
(x

3
,−4x

3

)
− 2Df

(−x

3
,
x

3

)
+ Df

(−x

3
,
2x

3

)

+Df
(−x

3
, x

)
+ Df

(−x

3
,
4x

3

))

holds for all x ∈ X \ {0}, by (3.1), we see that

Λf(x)−Jf(x)

(
5t

2

)
≥ τM

{
Λ 3

4
Df(x

3
,−x

3
)

(
3t

4

)
, Λ 3

8
Df(x

3
,− 2x

3
)

(
3t

8
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,

Λ 3
8
Df(x

3
,− 4x

3
)
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3t

8

)
, Λ 3

8
Df(x

3
,− 4x

3
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(
3t

8

)
,

Λ
1
4
Df

(
−x
3

, x
3
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t
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, Λ 1

8
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3
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t

8

)
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8
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3
, 4x

3
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(
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8

)}

≥ M(x, t)

for all x ∈ X \ {0}. It means that d(f, Jf) ≤ 5
2 < ∞ by the definition of

d. Therefore according to Theorem 3.1, the sequence {Jnf} converges
to the unique fixed point F : X → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by

F (x) := lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)
2n+1

)

for all x ∈ X. Since

d(f, F ) ≤ 1
1− α

2

d(f, Jf) ≤ 5
2− α

the inequality (3.2) holds. Next we will show that F is a general qua-
dratic mapping. Let x, y ∈ X \ {0}. Then by (RN3) we have
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ΛDF (x,y)(t) ≥ τM

{
Λ(F−Jnf)(2x+y)

(
t

12

)
, Λ(F−Jnf−F )(2x−y)

(
t

12

)
,

Λ2(F−Jnf)(x)

(
t

12

)
, Λ(Jnf−F )(x+y)

(
t

12

)
,

Λ(Jnf−F )(x−y)

(
t

12

)
, Λ2(Jnf−F )(2x)

(
t

12

)
,

ΛDJnf(x,y)

(
t

2

)}
(3.3)

for all n ∈ N. The first six terms on the right hand side of the above
inequality tend to 1 as n →∞ by the definition of F . Now consider that

ΛDJnf(x,y)

(
t

2

)
≥ τM

{
ΛDf(2nx,2ny)

2·4n

(
t

8

)
, ΛDf(−2nx,−2ny)

2·4n

(
t

8

)
,

ΛDf(2nx,2ny)
2·2n

(
t

8

)
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2·2n

(
t

8
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≥ τM

{
ΛDf(2nx,2ny)

(
4nt

4

)
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(
4nt

4

)
,

ΛDf(2nx,2ny)

(
2nt

4

)
, ΛDf(−2nx,−2ny)

(
2nt

4
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≥ τM

{
Λ′ϕ(x,y)

(
4nt

4αn

)
, Λ′ϕ(−x,−y)

(
4nt

4αn

)
,

Λ′ϕ(x,y)

(
2nt

4αn

)
, Λ′ϕ(−x,−y)

(
2nt

4αn

)}

which tends to 1 as n →∞ by (RN3) and 2
α > 1 for all x, y ∈ X \ {0}.

Therefore it follows from (3.3) that

ΛDF (x,y)(t) = 1

for each x, y ∈ X\{0} and t > 0. By (RN1), this means that DF (x, y) =
0 for all x, y ∈ X \ {0}. Since DF (x, 0) = 0 and DF (0, y) = 0 for all
x, y ∈ X, we obtain F is a general quadratic mapping. Assume that
α < 1 and Λ′ϕ(x,y) is continuous in x, y. If m, a, b, c, d are any fixed
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integers with a, c 6= 0, then we have

lim
n→∞Λ′ϕ((2na+b)x,(2nc+d)y)(t) ≥ lim

n→∞Λ′
ϕ((a+ b

2n )x,(c+ d
2n )y)

(
t

αn

)

= lim
n→∞Λ′

ϕ((a+ b
2n )x,(c+ d

2n )y)(mt)

= Λ′ϕ(ax,cy)(mt)

for all x, y ∈ X \ {0} and t > 0. Since m is arbitrary, we have

lim
n→∞Λ′ϕ((2na+b)x,(2nc+d)y)(t) ≥ lim

m→∞Λ′ϕ(ax,cy)(mt) = 1

for all x, y ∈ X \ {0} and t > 0. From these, we get the inequality

Λ(F−f)(x)(36t)

≥ lim
n→∞ τM

{
Λ(Df−DF )((2n+1)x,2nx)(t), Λ(F−f)((3·2n+2)x)(5t),

Λ(F−f)((2n+2)x)(5t), Λ2(F−f)((2n+1)x)(10t),

Λ(f−F )((2n+1+1)x)(5t), Λ2(f−F )((2n+1+2)x)(10t)
}

≥ lim
n→∞ τM

{
Λ′ϕ((2n+1)x,2nx)(t),M((3 · 2n + 2)x, (2− α)t),

M((2n + 2)x, (2− α)t),M((2n + 1)x, (2− α)t),
M

(
(2n+1 + 1)x, (2− α)t

)
,M

(
(2n+1 + 2)x, (2− α)t

) }

= 1

for all x ∈ X \ {0}. From the above equality and the fact f(0) = 0 =
F (0), we obtain f ≡ F .
Case 2. Assume that ϕ satisfies the condition (ii). Let the set (S, d)
be as in the proof of the case 1. Now we consider the mapping J : S → S
defined by

Jg(x) := g
(x

2

)
− g

(
−x

2

)
+ 2

(
g

(x

2

)
+ g

(
−x

2

))

for all g ∈ S and x ∈ X. Notice that

Jng(x) = 2n−1
(
g

( x

2n

)
− g

(
− x

2n

))
+

4n

2

(
g

( x

2n

)
+ g

(
− x

2n

))
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for all x ∈ X. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary constant
with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3), we have

ΛJg(x)−Jf(x)

(
4u

α
t

)
= Λ3(g(x

2
)−f(x

2
))+g(−x

2
)−f(−x

2
)

(
4u

α
t

)

≥ τM

{
Λ3(g(x

2
)−f(x

2
))

(
3u

α
t

)
, Λg(−x

2
)−f(−x

2
)

(u

α
t
)}

≥ τM

{
Λg(x

2
)−f(x

2
)

(u

α
t
)

,Λg(−x
2
)−f(−x

2
)

(u

α
t
)}

≥ M

(
x

2
,

t

α

)

= M(x, t)

for all x ∈ X \ {0}, which implies that

d(Jf, Jg) ≤ 4
α

d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant 0 < 4

α < 1. Moreover, by (3.1), we see that

Λf(x)−Jf(x)

(
5t

α

)
≥ Λ2Df(x

6
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6
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≥ M(x, t)

for all x ∈ X \{0}. It means that d(f, Jf) ≤ 5
α < ∞ by the definition of

d. Therefore according to Theorem 3.1, the sequence {Jnf} converges
to the unique fixed point F : X → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by

F (x)

:= lim
n→∞

(
2n−1

(
f

( x

2n

)
− f

(
− x

2n
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+

4n

2

(
f

( x
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)
+ f

(
− x
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for all x ∈ X. Since

d(f, F ) ≤ 1
1− 4

α

d(f, Jf) ≤ 5
α− 4

the inequality (3.2) holds. Next we will show that F is general quadratic.
Recall that (3.3) holds for all x, y ∈ X \ {0} and n ∈ N. The first six
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terms on the right hand side of the inequality (3.3) tend to 1 as n →∞
by the definition of F . Now consider that

ΛDJnf(x,y)
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t
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)
≥ τM

{
Λ22n−1Df( x

2n , y
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t
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2n+2
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,Λ′ϕ(−x,−y)

(
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which tends to 1 as n → ∞ by (RN3) for all x, y ∈ X \ {0}. Therefore
it follows from (3.3) that

ΛDF (x,y)(t) = 1

for each x, y ∈ X\{0} and t > 0. By (RN1), this means that DF (x, y) =
0 for all x, y ∈ X \ {0}. Since DF (x, 0) = 0 and DF (0, y) = 0 for all
x, y ∈ X, we obtain F is a general quadratic mapping. It completes the
proof of Theorem 3.2.

Now we have a generalized Hyers-Ulam stability of the general qua-
dratic functional equation (1.2) in the framework of normed spaces. Let
Λx(t) = t

t+‖x‖ . Then (X, Λ, τM ) is an induced random normed space,
which leads us to get the following result.

Corollary 3.3. Let X be a linear space, Y be a complete normed-
space, and ϕ : (X \ {0})2 → [0,∞). Suppose that ϕ satisfies one of the
following conditions:
(i) αϕ(x, y) ≥ ϕ(2x, 2y) for some 0 < α < 2,
(ii) ϕ(2x, 2y) ≥ αϕ(x, y) for some 4 < α
for all x, y ∈ X. If f : X → Y is a mapping such that

‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \ {0}, then there exists a unique general quadratic
mapping F : X → Y such that

‖f(x)− F (x)‖ ≤
{

5Φ(x)
2−α if ϕ satisfies (i),
5Φ(x)
α−4 if ϕ satisfies (ii)
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for all x ∈ X, where Φ(x) is defined by

Φ(x) = max
{

ϕ
(x

3
,−x

3

)
, ϕ

(x

3
,−2x

3

)
, ϕ

(x

3
,−x

)
, ϕ

(x

3
,−4x

3

)
,

ϕ
(−x

3
,
x

3

)
, ϕ

(−x

3
,
2x

3
), ϕ

(−x

3
, x

)
, ϕ

(−x

3
,
4x

3

)}
.

Moreover, if 0 < α < 1 and ϕ is continuous under the condition (i), then
f is itself a general quadratic mapping.

Now we have Hyers-Ulam-Rassias stability results of the general qua-
dratic type functional equation (1.2).

Corollary 3.4. Let X be a normed space, p, q ∈ R\[1, 2] and Y a
complete normed-space. If f : X → Y is a mapping such that

‖Df(x, y)‖ ≤ ‖x‖p + ‖y‖q

for all x, y ∈ X \ {0}, then there exists a unique general quadratic
mapping F : X → Y such that

‖f(x)− F (x)‖ ≤




5(‖x
3
‖p+‖ 4x

3
‖q)

2−2max{p,q} if p < 1 and 0 ≤ q < 1,
5(‖x

3
‖p+‖ 4x

3
‖q)

2min{p,q}−4
if p, q > 2

for all x ∈ X \{0} and f is itself a general quadratic mapping if p, q < 0.

Proof. If we denote by ϕ(x, y) = ‖x‖p + ‖y‖q, then the induced ran-
dom normed space (X, Λx, τM ) holds the conditions of Corollary 3.3 with
α = 2max{p,q} if p, q < 1 and α = 2min{p,q} if p, q > 2.

Corollary 3.5. Let X be a normed space, p + q ∈ R\[1, 2] and Y a
complete normed-space. If f : X → Y is a mapping such that

‖Df(x, y)‖ ≤ ‖x‖p‖y‖q

for all x, y ∈ X \ {0}, then there exists a unique general quadratic
mapping F : X → Y such that

‖f(x)− F (x)‖ ≤





5‖x
3
‖p+q

2−2p+q if p + q < 1 and q < 0,
5‖x

3
‖p‖ 4x

3
‖q

2−2p+q if p + q < 1 and q ≥ 0,
5‖x

3
‖p+q

2p+q−4
if p + q > 2 and q < 0,

5‖x
3
‖p‖ 4x

3
‖q

2p+q−4
if p + q > 2 and q ≥ 0

for all x ∈ X\{0} and f is itself a general quadratic mapping if p+q < 0.

Proof. If we denote by ϕ(x, y) = ‖x‖p‖y‖q, then the induced random
normed space (X, Λx, τM ) holds the conditions of Corollary 3.3 with
α = 2p+q.
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