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THE PERFORMANCE OF A MODIFIED ARMIJO LINE
SEARCH RULE IN BFGS OPTIMIZATION METHOD

MinSu Kim*, SunJoo Kwon**, and SeYoung Oh***

Abstract. The performance of a modified Armijo line search rule
related to BFGS gradient type method with the results from other
well-known line search rules are compared as well as analyzed. Al-
though the modified Armijo rule does require as much computa-
tional cost as the other rules, it shows more efficient in finding local
minima of unconstrained optimization problems. The sensitivity of
the parameters used in the line search rules is also analyzed. The
results obtained by implementing algorithms in Matlab for the test
problems in [3] are presented.

1. Introduction

The unconstrained optimization problem requires only the objective
function as

(1.1) min f(x), x ∈ Rn

where Rn is an n-dimensional Euclidean space and f : Rn → R1 is a
continuously differentiable function. There are no functional constraints
although the side constraints are necessary to keep the solution finite.

While unconstrained optimization does not occur often in engineering
design, its numerical techniques provide the means to solve constrained
problems by transforming it into an unconstrained one.

The typical numerical techniques for solving (1.1) are iterative and
also refers to as line search methods. The iterations choose a search
direction by moving along the direction while taking an appropriate
step size.

Each iteration of the line search methods for (1.1) is given by

(1.2) xk+1 = xk + αkdk, k = 1, 2, 3, . . . ,
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where x1 ∈ Rn is an initial point, dk is a descent direction of f(x) at xk,
and the positive scalar αk is the step size.

Line search methods differ in how the search direction and the step
size are chosen. The different choices of dk and αk yield different conver-
gence properties. Generally the first-order conditions(FOC), ∇f(x∗) =
0, is used to check for local convergence to a stationary point x∗.

The search directions can be constructed in many ways. According
to the information regarding the order of the derivative of the objective
function, the techniques for the search directions can be classified in
the following: gradient methods, conjugate gradient methods, Newton’s
methods, quasi-Newton’s methods, and derivative-free methods.

After the descent direction dk is taken, line search methods investigate
a step size αk along the search direction. The different choices of the
step size αk ensure that the sequence of the iterates xk defined by (1.2)
is globally convergent with the some rate of convergence.

The exact value of the step size αk is αk = argmin
α>0

f(xk+αdk) that is

the minimizer of the function f in terms of α along the descent direction
dk. However, the exact step size is difficult and often impossible to find
in practical computation. To find even a local minimizer of f(xk + αdk)
generally requires too many evaluations of the objective function f and
possibly the gradient ∇f . More practical strategies in performing an
inexact line search to identify a step length may help achieve adequate
reductions in f at minimal cost.

Typical line search algorithms are tried by applying a sequence of
candidate values for αk while certain conditions are satisfied. Although
sophisticated line search algorithms can be quite complicated, the line
search is done in two following stages: A bracketing phase finds an in-
terval containing desirable step lengths, and a bisection or interpolation
phase computes a good step length within this interval.

Many inexact line search methods have been proposed: Armijo[8],
Wolfe[9], Porta and Shi[6], Goldstein[2], and others. Recently Shi and
Shen[7] proposed a new inexact line search rule similar to the Armijo
rule analyzed the global convergence.

We present the performance of a modified Armijo line search rule as-
sociated with BFGS(Broyden, Fletcher, Goldfarb, Shanno[10], [4]) gra-
dient type method to compare with other well-known line search rules.
The modified Armijo rule proposed by Shi in [7] has very similar be-
haviors with the trust region method. Although it requires as much
computational cost as the other rules, it shows more efficient in finding
local minima of unconstrained optimization problems. The sensitivity
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of the parameters used in the line search rules is also analyzed. The
algorithms implemented in Matlab were run with many test problems
shown in [3] on 2.4MHz Intel desktop. We denote the function value
∇f(xk) by gk.

Section 2 contains a brief discussion of BFGS for a descent direc-
tion. Here, the concepts about the Wolfe and Goldstein rules in [5] are
presented. The new inexact line search called modified Armijo rule is
also summarized. Some numerical results and efficiency of the modi-
fied Armijo step size rule with BFGS algorithm are shown in Section 3.
Conclusions are given in Section 4.

2. Line search methods

We assume that f(x) is bounded below and its gradient g(x) is Lip-
schitz continuous in an open convex set. The search direction dk is
generally required to satisfy

(2.1) ∇f(xk)T dk < 0 or ∇f(xk)T dk ≤ −c ‖∇f(xk)‖2 ,

which guarantees that dk is a sufficient and descent direction of f(xk)
at xk and c > 0 is a constant.

The search directions can be determined in many ways. The tech-
niques for finding the search direction primarily differ in how the search
direction is established. BFGS method is a gradient-based method which
is one of quasi-Newton method as it behaves like Newton’s method in
approaching the solution. It has the property of quadratic convergence
and robustness while carrying the information forward from the previous
iterations. It currently is the most popular one in the variable metric
methods.

Algorithm 1. BFGS(Broyden-Fletcher-Goldfarb-Shanno) method.

Step 0. Choose x0, B0, k := 1.
Step 1. If ‖∇f(xk)‖ ≤ eps, then stop; else, go to Step 2.
Step 2. The search direction is obtained as a solution to

Bkdk = −∇f(xk)

and set xk+1 = xk + αkdk.
Step 3. Updated by

Bk+1 = Bk +
ykyT

k

yT
k sk

− BksksT
k Bk

sT
k Bksk

,

where yk = ∇f(xk+1)−∇f(xk), sk = xk+1 − xk.

Step 4. k := k + 1; Go to Step 1.
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Most line search algorithms require dk to be a descent direction be-
cause this property guarantees that the function f can be reduced along
this direction. Moreover, the search direction often has the form

(2.2) Bkdk = −∇f(xk),

where Bk is a symmetric and nonsingular matrix. In the steepest descent
method Bk is simply the identity matrix I, while in Newton’s method
Bk is the exact Hessian ∇2f(xk). In quasi-Newton methods, such as
BFGS and DFP method, Bk is an approximation of the Hessian that is
updated at every iteration by means of a low-rank formula. However,
the difference between the DFP and BFGS is the way the metric is
updated: the former converges to the inverse of the Hessian, while the
latter converges to the Hessian itself. In a sense the BFGS is more direct
as the BFGS replaces the conjugate gradient techniques as a workhorse
in solving nonlinear equations.

When dk is defined by (2.2) and Bk is positive definite, we have

(2.3) dT
k∇f(xk) = −∇f(xk)T B−1

k ∇f(xk) < 0,

and therefore dk is a descent direction.
An initial choice of positive definite matrix for Bk is usually the iden-

tity matrix as a default choice.
More practical strategies are needed in order to perform an inexact

line search to identify a step length that achieves adequate reductions
in f at minimal cost.

One of the well-known and useful inexact line search rules is proposed
by Armijo, called Armijo line search rules. Given an initial step size
s > 0 and β ∈ (0, 1), choose αk to be the largest one in

{
s, sβ, sβ2, . . .

}
such that

(2.4) f(xk + αdk) ≤ f(xk) + c1α∇f(xk)T dk.

The αk should give sufficient decrease in the objective function f , as
measured by (2.4).

The sufficient decrease condition may not be enough by itself to en-
sure that the algorithm makes reasonable progress, since it is satisfied
for all sufficiently small values of α. To rule out unacceptably short steps
αk is required to satisfy

(2.5) ∇f(xk + αkdk)T dk ≥ c2∇f(xk)T dk,

for some constant c2 ∈ (c1, 1), where c1 is the constant from (2.4). For
this curvature condition, typical value of c2 is 0.9 when the search direc-
tion dk is chosen by a Newton, quasi-Newton, as well as BFGS methods.
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The sufficient decrease (2.4) and curvature conditions (2.5) are known
collectively as the Wolfe conditions. The strong Wolfe conditions require
αk to satisfy

(2.6) f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)T dk

and

(2.7)
∣∣∇f(xk + αkdk)T dk

∣∣ ≤ c2

∣∣∇f(xk)T dk

∣∣ ,

with 0 < c1 < c2 < 1. The condition (2.7) does not allow the derivative
to be too positive. Hence, we exclude points that are far from stationary
points of φ(α) = f(xk + αdk), α > 0.

It is not difficult to prove that there exist step lengths which satisfy
the Wolfe conditions for every function f that is smooth and bounded
below.

Theorem 2.1. ([6]) Suppose that f : R → R is continuously differen-
tiable. Let dk be a descent direction at xk, and assume that f is bounded
below along the line {xk + αdk|α > 0}. Then if 0 < c1 < c2 < 1, there
exist intervals of step lengths satisfying the Wolfe conditions and the
strong Wolfe conditions.

The Wolfe conditions are scale-invariant in a broad sense; multiply-
ing the objective function by a constant or making an affine change of
variables does not alter them. The convergence results are proved in [9]
which may be used in most line search methods, particularly important
in the implementation of quasi-Newton methods.

How to choose the parameters (such as s, c1, c2, β) is very important
for practical problems. Several valid techniques have been appearing in
many literatures.

Similar to the Wolfe conditions, the Goldstein conditions also ensure
that the step length achieves sufficient decrease while preventing from
being too small such as

f(xk) + (1− c1)αk∇f(xk)T dk ≤ f(xk + αkdk)

≤ f(xk) + c1αk∇f(xk)T dk,
(2.8)

with 0 < c1 < 1
2 . Thus, the Goldstein and Wolfe conditions have much in

common, and their convergence theories are quite similar. The Goldstein
conditions are often used in Newton-type methods, however, are not
well suited for quasi-Newton methods with a positive definite Hessian
approximation.
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Algorithm 2. Modified Armijo line search rule.
Step 0. Choose x1 ∈ Rn, a symmetric positive definite matrix B1, β ∈ (0, 1),

and c1 ∈ (0, 1
2
) ; k := 1.

Step 1. gk := ∇f(xk). If ‖gk‖ ≤ eps then stop else go to Step 2.
Step 2. dk = −B−1

k gk.

Step 3. sk = − gT
k dk

dT
k

Bkdk
and choose αk to be the largest one in

{
sk, skβ, skβ2, . . .

}

such that f(xk + αdk)− f(xk) ≤ c1α
[∇f(xk)T dk + 1

2
αdT

k Bkdk

]
.

Step 4. Set xk+1 = xk + αkdk.
Step 5. Set sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk). Modify Bk as Bk+1

by using BFGS formula.

Step 6. k := k + 1 ; Go to Step 1.

Theorem 2.2. ([9]) If f(x) is bounded below and its gradient g(x)
is Lipschitz continuous in an open convex set, dk satisfies (2.1) and αk

is defined by the new Armijo search. Algorithm 2 generates an infinite
sequence xk with a bounded sequence Bk, that is, there is a β such that

‖Bk‖ ≤ β, ∀ k. Then lim
k→∞

(−gT
k dk

‖dk‖ ) = 0 and lim
k→∞

∥∥gT
k

∥∥ = 0.

3. Numerical results

In this section, the performances of BFGS algorithm with Wolfe, as
well as Goldstein conditions, and the modified Armijo step size rule are
discussed for the comparison purpose. The descent directions for the line
search methods are determined by BFGS algorithm, and three different
step size rules presented in the previous section are used for appropriate
reductions of the objective function value. The implemented algorithm
for the unconstrained optimization problem is stated as follows.

Algorithm 3.
Step 0. Given some parameters β ∈ (0, 1), c1 ∈ (0, 1

2
), c2 ∈ (c1, 1), B1 = In,

eps = 10−2, let x1 ∈ Rn and set k:=1.
Step 1. If ‖∇f(xk)‖ ≤ eps, then stop; else, go to Step 2.
Step 2. Choose dk to satisfy (2.2).
Step 3. Set xk+1 = xk +αkdk, where αk is defined by the new rule, Wolfe’s

rule and Goldstein rule.
Step 4. Bk+1 is determined by BFGS formula.
Step 5. k := k + 1; Go to Step 1.

The codes were written in Matlab. Five test problems in [3] and
one problem in the Navier-Stocks equations from fluid mechanics are
chosen. The problems were tested on a Intel PC with 2.4MHz. For
each test problem, we chose a few initial points x0 at each distance r (
= 1, 2, 3 or 10) from the known optimal points x∗ and investigated the
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average number of iterations and execution cpu times for three step size
rule algorithms. The stopping condition was ‖∇f(xk)‖ ≤ 10−2. The
solution is dependent on the starting point, and the tolerance for one-
dimensional step size search as well as the derivatives are computed nu-
merically using the finite difference method. Note that each component
in Tables is an average number of iterations(execution cpu time(sec)).

Problem 3.1. (Rosenbrock function)
(i) f(x) = 100(x2 − x2

1)
2 + (1− x1)2

Table 1. β = 0.99, c1 = 10−1, c2 = 0.9, ‖x0 − x∗‖ = r

New rule Wolfe’s rule Goldstein’s rule
r = 1 40(0.1) 41(0.1) 98(0.8)
r = 2 65(0.2) 60(0.2) 87(0.9)
r = 3 81(0.2) 76(0.1) 226(5.1)

(ii) f(x) =
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
, n = 100

Table 2. β = 0.99, c1 = 10−6, c2 = 0.1, ‖x0 − x∗‖ = r

New rule Wolfe’s rule Goldstein’s rule
r = 1 539(3.5) 421(11.2) 539(3.7)
r = 2 853(5.9) 154( 9.7) 853(5.8)
r = 3 1013(7.2) 176(10.4) 1013(7.1)

Problem 3.2. (McCormic curved valley)
f(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1

Table 3. β = 0.99, c1 = 0.1, c2 = 0.9, ‖x0 − x∗‖ = r

New rule Wolfe’s rule Goldstein’s rule
r = 1 6.75(0.01) 6.5 (0.01) 6.5 (0.03)
r = 2 6.5 (0.01) 6.25(0.02) 6.25(0.03)
r = 3 9 (0.01) 9 (0.05) 9 (0.04)

Problem 3.3. (Powell’s quartic function)
f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4
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Figure 1. Contour plots of Rosenbrock function(left)
and McCormic curved valley(right).

Table 4. β = 0.9, c1 = 10−2, c2 = 0.1, ‖x0 − x∗‖ = r

New rule Wolfe’s rule Goldstein’s rule
r = 1 19(0.03) 16(0.03) 19(0.03)
r = 2 25(0.03) 19(0.03) 25(0.03)
r = 3 26(0.03) 19(0.03) 25(0.03)
r = 10 69(0.18) 362(9.2 ) 69(0.18)

Problem 3.4. (Wood’s function)

f(x) =100(x2 − x2
1)

2 + (x1 − 1)2 + 90(x4 − x2
3)

2 + (1− x3)2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

Table 5. β = 0.85, c1 = 10−3, c2 = 0.5, ‖x0 − x∗‖ = r

New rule Wolfe’s rule Goldstein’s rule
r = 1 62.6 (0.04) 33.3(0.03) 62.6 (0.04)
r = 2 59.75(0.04) 60 (0.04) 59.75(0.04)
r = 3 60 (0.04) 61 (0.04) 60 (0.04)
r = 10 82 (0.31) 312 (7.64) 82 (0.31)

Problem 3.5. (Watson function)

f(x) =
31∑
i=1

fi(x)2, where
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fi(x) =
30∑

j=2
(j − 1)xjt

j−2
i −

(
n∑

j=1
xjt

j−1
j

)2

− 1, ti = i
29 , 1 ≤ i ≤ 29,

f30(x) = x1, f31(x) = x2 − x2
1 − 1.

Table 6. β = 0.9, c1 = 10−3, c2 = 0.4

Start point New rule Wolfe’s rule Goldstein’s rule
(0, 0, . . .) 290( 9.32) 311(12.79) 290(9.40)
(1, 1, . . .) 390(22.11) 223(32.14) failed

(0, 1, 0, 1 . . .) 270(11.15) 207(28.23) failed

Problem 3.6. (Three-dimensional flow near a rotating disk[8]) This
example represents another exact solution to the Navier-Stokes equa-
tions from fluid mechanics. The nonlinear two-point boundary value
problem describes a viscous flow around a flat disk which rotates about
an axis perpendicular to its plane with a constant angular velocity. Once
the problem is redefined mathematically, the new set of coupled nonlin-
ear equations with boundary conditions at two points is as follows:

2F + H ′ = 0

F 2 + F ′H −G2 − F ′′ = 0

2FG + HG′ −G′′ = 0

F (0) = 0, G(0) = 1, H(0) = 0

F (∞) = 0, G(∞) = 0

(3.1)

Equations are converted to state space form. The design variables are
the missing boundary conditions on F ′(0), G′(0) and the final value of
the independent variable. The objective function is the squared error in
the integrated value at the final condition.

The optimization problem

min f(x1, x2, x3) : y1(x3)2 + y3(x3)2

where the state variables are obtained from the solution of the following
initial value problem:



y′1
y′2
y′3
y′4
y′5




=




y2

y2
1 + y2y5 − y2

3

y4

2y1y3 + y4y5

−2y1




;




y1(0)
y2(0)
y3(0)
y4(0)
y5(0)




=




0
x1

1
x2

0



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The state equations are integrated using Matlab function ode45.

Table 7. β = 0.8, c1 = 10−3, c2 = 0.5

Start point New rule Wolfe’s rule Goldstein’s rule
(1,−1, 8) 25( 6.9) 20(28.5) 25(7.2)
(3,−2, 10) 89(184.3) failed failed

The numerical results are shown in Tables 1-7. The (extended) Rosen-
brock’s problem is notorious since it requires a large number of iterations
for convergence. As the result indicates, the new rule and Goldstein’s
rule have performed better than Wolfe’s rule. For small problems such
as McCormic curved valley, Powell’s quadratic function, and Wood’s
function, all three rules have performed similary as shown in Tables 3-5.
However, the new rule needed less number of iterations and execution
time when the dimension of variables are increased as shown in Tables
6-7. Especially the Goldstein’s rule that had very similar performances
to the new rule for the smaller problems has often failed in finding the
optimal solutions.

4. Conclusions

An application of Shi’s line search rule which is combined with BFGS
descent method is presented and its efficiency is investigated. In such
algorithm, we can use an approximation of the Hessian as the objective
function to get a large step size in each iteration and still maintain the
global convergence of BFGS method. As shown in the computational
results, when the dimension n of the problems is increased, the new
step size rule has performed better than other rules such as Wolfe’s and
Goldstein’s rule.
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